
School Science and Safety Making the Connection

Dave Waddell Waddell Environmental LLC <u>www.waddellenviro.com</u>

Today's Topics

- The culture of laboratory safety
- Chemical hazard evaluation
- Proper chemical management
- Identifying and fixing unsafe situations
- Integrated chemical management & safety plan
- Responding to a spill
- Environmental health & safety requirements
- Getting assistance

OSHA – the lead agency for workplace safety

code of federal regulations

Labor

29

ART 1910 (§1910.1000 TO END evised as of July 1, 1999

OSHA Laboratory Standard 29 CFR 1910.1450

PART 1910-OCCUPATIONAL SAFETY AND HEALTH STANDARDS

 The authority citation for part 1910, subpart Z is amended by adding the following citation at the end. (Citation which precedes asterisk indicates general rulemaking authority.)

Authority: Secs. 6 and 8, Occupational Safety and Health Act, 29 U.S.C. 655, 657; Secretary of Labor's Orders Nos. 12-71 (36 FR 8754), 8-76 (41 FR 25059), or 9-83 (48 FR 35736), as applicable; and 29 CFR part 1911. * * * Section 1910.1450 is also issued under sec. 6(b), 8(c) and 8(g)(2), Pub.L. 91-596, 84 Stat. 1593, 1599, 1600; 29 U.S.C. 655, 657.

2. Section 1910.1450 is added to subpart Z, part 1910 to read as follows:

191.1450 Occupational exposure to hazardous chemicals in laboratories.

(a) Scope and application. (1) This section shall apply to all employers engaged in the laboratory use of hazardous chemicals as defined below.

(2) Where the section applies it shall supersede, for laboratories, the requirements of all other OSHA health standards in 29 CFR part 1910, subpart Z, except as follows:

(i) For any OSHA health standard, only the requirement to limit employee exposure to the specific permissible exposure limit shall apply for laboratories, unless that particular standard states otherwise or unless the conditions of paragraph (a)(2)(iii) of this section apply.

(ii) Prohibition of eye and skin contact where specified by any OSHA health standard shall be observed.

(iii) Where the action level (or in the absence of action level, the permissible exposure limit) is routinely exceeded for an OSHA (i) are capable of protecting employees from the health hazards presented by hazardous chemicals used in that particular workplace and (ii) meets the requirements of paragraph (e) of this section.

"Combustible liquid" means any liquid having a flashpoint at or above 100 °F (37.8 °C), but below 200 °F (93.3 °C), except any mixture having components with flashpoints of 200 °F (93.3 °C), or higher, the total volume of which make up 99 percent or more of the total volume of the mixture.

"Compressed Gas" means"

 (i) A gas or mixture of gases having, in a container, an absolute pressure exceeding 40 psi at 70 °F (21.1 °C); or

(ii) A gas or mixture of gases having, in a container, an absolute pressure exceeding 104 psi at 130 °F (54.4 °C) regardless of the pressure at 70 °F (21.1 °C);or

(iii) A liquid having a vapor pressure exceeding 40 psi at 100 °F (37.8 °C) as determined by ASTM D-323-72.

"Designated Area" means an area which may be used for work with "select carcinogens" reproductive toxins or substances which have a high degree of acute toxicity. A designated area may be the entire laboratory, an area of a laboratory or a device such as a laboratory hood.

"*Emergency*" means any occurrence such as, but not limited to, equipment failure, rupture or containers or failure of control equipment which results in an uncontrolled release of a hazardous chemical into the workplace.

"*Employee*" means an individual employed in a laboratory workplace who may be exposed to hazardous chemicals in the course of his or her assignments.

"*Explosive*" means a chemical that causes a sudden, almost instantaneous release of pressure, gas, and heat when subjected to sudden shock, pressure, or high temperature.

"Flammable" means a chemical that falls into one of the following categories:

The Laboratory Safety Standard

- Designate a chemical hygiene officer
- Write and implement an effective site-specific chemical hygiene plan
- Provide worker training and guidelines
- We'll revisit this later today in greater detail

OSHA Hazard Communication Standard 29 CFR 1910.1200

- It is worker's right to have access to information about the chemical hazards in their workplace
- Workers must be made aware and trained on all chemical hazards encountered in the workplace

Bloodborne Pathogens 29 CFR 1910.1030

- Protecting workers from infectious agents
- Training required if risk of exposure

Why should schools be concerned?

- Schools must provide a safe workplace
- Science labs have inherent risks
 - High heat, extreme cold
 - Toxic, corrosive, flammable and reactive chemicals
 - Electricity, gas lines, water lines
 - Dozens of hormone-driven, distracted students
- Fixing safety problems is much more expensive than preventing them

Roles and Responsibilities

District level (4 T's)

- Create, maintain & administer the safety plan
- Stress safety & compliance as priorities
- Training provided, Time allocated
- Tools in place, Technical assistance if needed

School level (4 S's)

- School-specific plan in place, Safety stressed
- Supplies provided, Support safety officers

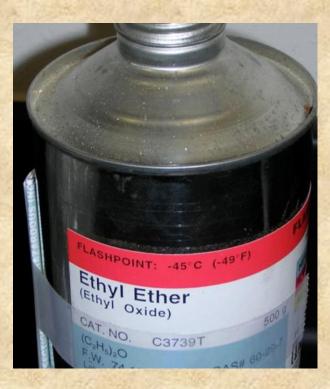
Science lab level (4 l's)

- Task-specific enforcement of the plan
- Inspect regularly, Inventory updated
- Identify issues, Inform administration

Encouraging a culture of safety

- Administration sets the tone
- Facilities designed with safety in mind
- Safety huddles and trainings
- Regular review of equipment and chemicals
- Incorporated in lesson and experimental design

Cues help guide behavior



Model and enforce safe behavior

Chemicals of concern

- Potential explosives
- Water and air reactives
- Carcinogens, teratogens & neurotoxins
- Poisons via skin contact & inhalation

Peroxide formers Cap's threads hold peroxide crystals One pint of ether: 25 foot fireball

Others peroxide formers

- 1,4-Dioxane
- Tetrahydrofuran
- Acetaldehyde

Not all peroxide formers are solvents Potassium Metal (K₂) – Color Key

- Silver Potassium metal -Water Reactive
- White P. Hydroxide Corrosive
- Yellow/Orange P. Superoxide
 Water reactive, corrosive, unstable
- Red P. Ozonide Highly reactive, explosive

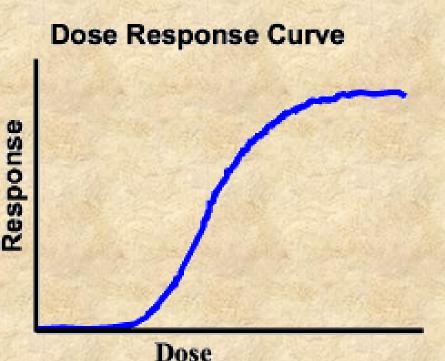
Biology's the place for nitro-organics

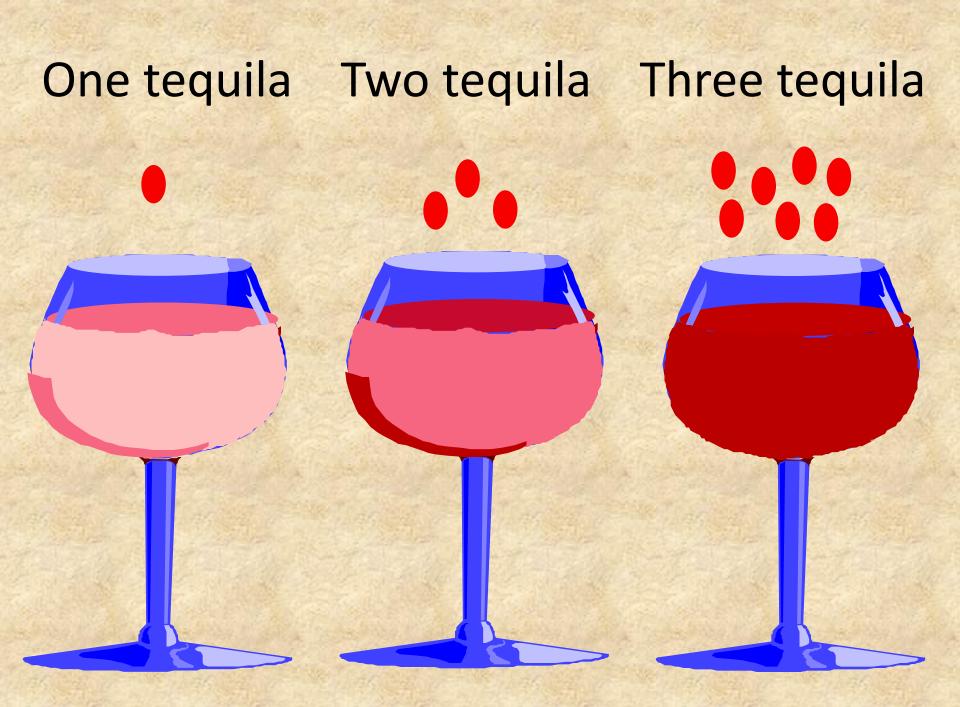
- 2,4-dinitrotoluene
- Dinitrophenol
- Nitroaniline

Picric acid (trinitrophenol) Primary constituent in Bouin's Fluid

Air reactive compounds Yellow and white phosphorus Burn this pyrophoric, get water reactive phosphorus pentoxide smoke

Water reactive compounds


- Alkali metals
 - -Sodium
 - -Lithium
 - Potassium
 - Calcium carbide


Peroxidized sodium

Dose and response

- Very low exposures often show no effect
- Above a certain dose, response won't increase
- That response could be death, of course...

Effects of size on response

__

Photo © Michelle Riggen-Ransom – Attribution licensed at www.flickr.com/photos/riggenransom/4868969263/

Routes of exposure

Swallow It Breathe It

Touch It

Toxic by inhalation

- Simplest way to get exposed
- Dusts, liquids or gases

Avoid powdered metals

Photos by Petr Kratochvil- Public domain

Toxic and corrosive by inhalation

Use chlorine or bromine water instead

Hazardous by skin contact

Toxins absorbed through the skinCorrosive liquid and solids

Toxic organics that absorb thru skin

- Aniline compounds
- Phenol

Be wary around Amines – toxic, corrosive, absorbs through skin, may be flammable

Funky looking acid bottles This is NOT normal

Hydrofluoric Acid (HF) Absorbs quickly through skin

- Glass etchant
- Toilet stain remover
- Anesthetic
- Bone disintegration
- Extreme pain
- Gangrene, amputation
- 250 mls = death

Hydroxides preferentially damage eyes

They also eat black plastic caps

Nitric acid Corrosive, oxidizer, toxic Oxidizers degrade organics Nitric caps usually degraded in 7-10 years

Good reason to save intact caps

Nitric acid is very toxic by inhalation

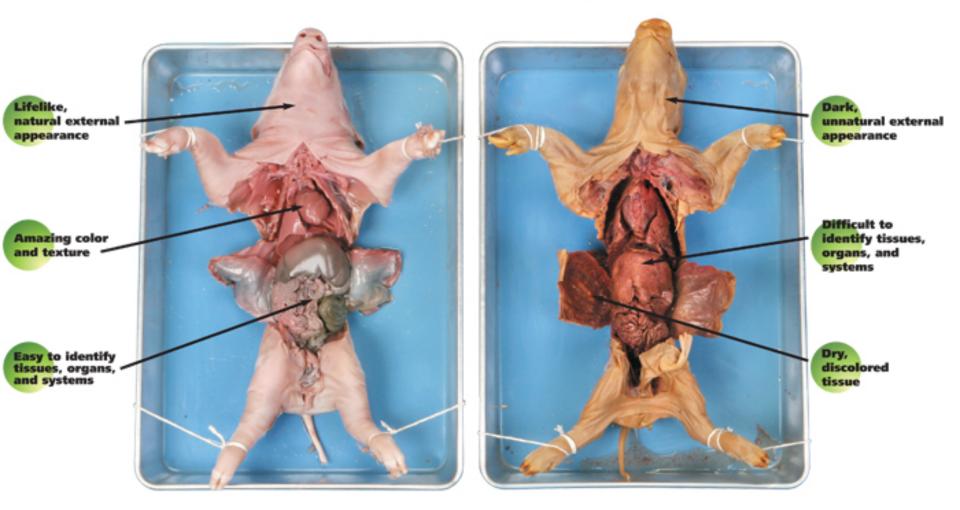
 Fuming nitric acid - Red nitrogen dioxide Inhalation of vapors -Intense irritation - Feel better for awhile Then can have depressed lung function, coma, death

Carcinogens and teratogens

Chronic exposure can lead to cancer, birth defects and other reproductive harm

Formaldehyde Carcinogen and teratogen (birth defects) Readily inhaled & absorbed thru skin

Photo ©Francois Karm. hwww.flickr.com/photos/francoiskarm/4140823705/


Formaldehyde exposure reduction

- Odor detection of formaldehyde is 0.8 ppm
- OSHA action level is 0.5 ppm
- Purchase formalin-free specimens
- Assume old specimens contain formalin
- Wear gloves

Which Specimen Looks More Natural to You?

Carolina's Perfect Solution® Specimen

Competitor's Specimen

Avoid powdered carcinogens

- Nickel compounds
- Cobalt compounds
- Arsenic compounds
- Cadmium compounds

Chromates & dichromates Corrosive, oxidizing and carcinogenic Avoid chlorinated solvents Most are reproductive hazards

Other organic carcinogens

- Acetaldehyde
- Benzene
- Naphthalene

Highly dangerous poisons

- Cyanides
- Azides

Toxic metal compounds

- Lead compounds
- Mercury compounds

Other toxic metals

- Antimony
- Beryllium
- Cadmium
- Cobalt
- Nickel
- Selenium

Your highest risk chemical?

School chemicals database

- Inventory spreadsheet
- Prioritizes chemicals for removal
- Links chemicals to grade level
- Describes hazards & storage codes

www.schoolchemlist.org

		⇔Page 5 v of	Tips on Use			
Chemical Name	Physical Hazard	Health Hazard Harmful if swallowed	 Search partial words: – "Canc" gets 			
		May cause allergy or asthma symptoms or breathing difficulties if inhaled May cause an allergic skin reaction May cause cancer May damage fertility or the unborn child Suspected of causing genetic defects	carcinogens — " Explo " gets explosive			
Congo Red		May cause cancer Suspected of damaging fertility or the unborn child	 Click header titles to sort by category Click on a name for in- depth info 			

Then play with it as you see fit

Hazardous Chemicals in Schools

Home >> Resources for Schools >> Schools Chemical List

Download	~ 📧						Search Clear	
Page 1 ∽ of 4 ⇔ View All 37 records								
Chemical Name	<u>Physical</u> Hazard	<u>Health</u> Hazard	Environ- mental Hazard	Lowest Grade Allowed	<u>Storage</u> Category	Experiments Where Used	Disposal Method	
Acetal	Highly flammable liquid and vapour May form explosive peroxides	Causes serious eye irritation Causes skin irritation		Ban Candidate	O-3 Flam Cabinet	NONE	Dispose as hazardous waste	
Acetaldehyde	Extremely flammable liquid and vapour May form explosive peroxides	Causes serious eye irritation May cause respiratory irritation Suspected of causing cancer		Ban Candidate	O-3 Flam Cabinet	NONE. Formerly used as: Organic substrate in organic reactions.	Highly reactive chemical - assessment required before disposal	
Acetylene	Explosive with or without contact with air Extremely flammable gas			Purchase restricted to use in welding shop.	Gas - Flammable	Fuel. Calorimetry. Often created in small amounts in class for	Return to gas cylinder vendor or dispose as hazardous waste	

Haz Rankings Link to Grade Levels

- Hazard Rank All Grades
 - -Safe for all grades
 - -26 chemicals

Hazard Rank – Elementary Demos

- Elementary teacher use & above
- 19 chemicals

Hazard Rank – Middle School

- Grade 6 and higher
- 368 chemicals

Hazard Rank – High School

- High school & above
- 257 chemicals

Hazard Rank – High School w/ hygiene officer approval

- Advanced placement chemistry, international baccalaureate programs
- 114 chemicals w/ limited utility & high hazards
- Needs chemical hygiene plan & independent OK
- Suggested quantity restrictions

Ban Candidates What's needed? VS. What's cool?

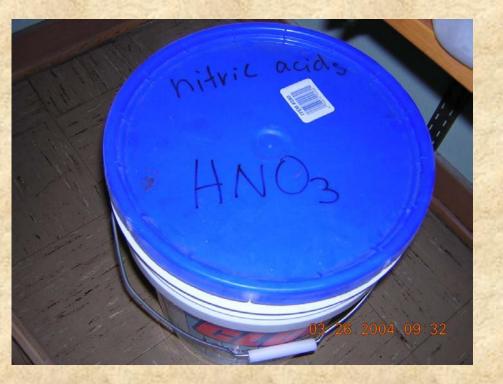
We used a third party to decide

Washington Science Teachers Association

 Decide if it is <u>Needed</u>

HINGTON SCIENCE TEACHERS ASSOC

- School chemical suppliers
 - See if they even sell it any more


Ban Candidates Your first priority for removal

- High hazard
- Not sold by Flinn, Carolina Bio Supply, etc
- Unnecessary per WSTA for teaching
- Already banned

Dangerous chemical mixtures Trouble when incompatibles meet Keep acids away from bases Separate nitric & acetic acids Put glacial acetic acid in flam cabinet

> Photo © dullhunk. Attribution licensed at www.flickr.com/photos/dullhunk/5522495285/

Cheap way to separate nitric acid

Separate water reactives and alcohol

Photo: Dave Waddell

Troubles with bleach?

- Great disinfectant
- Not very toxic
- Many incompatibilities

Bleach mixed with ammonia = poisonous chloramine gas

Bleach mixed with acids = toxic chlorine gas

Sulfuric acid dehydrates other acids

Toxic gas generator Sulfuric acid + hydrochloric acid = chlorine

Issues with metals/elements storage

Bromine is often by aluminum

- Both are elements
- May be delivered together in a box of metals

Four goals of chemical storage

- Don't store what you won't use
- Keep things from degrading
- Keep incompatibles apart
- Protect human health & environment

Keep storerooms securely locked

Common storage issues Science lab kits Remove acids over 1.0 molar **Remove all flammables Keep containers closed** No chemical storage by drains

Photo: Dave Waddell

Use secondary containment

- 110% of capacity of largest bottle
- Compatible with the contents
- Clean up spills when you find them

No flammables in electrical apparatus No food with chemicals in refrigerator Venting of flammables cabinets is <u>not</u> recommended

Excellent storage

- Locking cupboards
- Labeled with contents
- Dilute solutions in secondary containment

Use secondary containment Holds 110% of largest container

I'm a big fan of SciMatCo cabinets

- Wood w/ plastic hinge
- Spill containment trays
- Dividers (bottom one)

Ä	ц <u> </u>				
Storage Pattern for Chemicals Where Space is Limited					
Inorganic Reactives & Metals (I-1, I-10)	Organic Toxins (0-5, 0-7)				
Sulfur, Phosphorus (double packaged), Arsenic, Solid Metals, Hydrides, Lithium, Sodium	Epoxy Compounds, Isocyanates, Sulfides, Polysulfides				
Inorganic Salts (I-2)	Organic Reactives #6				
Chlorides, Iodides, Fluorides, Bromides, Sulfates, Sulfites Thiosulfates, Phosphates.	Peroxides, Azides, Hydroperoxides				
	Flammable Storage Cabinet (0-2, 0-3, 0-4,				
Inorganic Oxidizers (I-3, I-6, I-8)	0-8 & concentrated organic bases)				
	Alcohols, Glycols, Phenol, Hydrocarbons, Cresols, Esters,				
Nitrates, Nitrites, Borates, Chromates, Manganates,	Ethers, Propionic Acid, Formic Acid, Glacial Acetic Acid,				
Permanganates, Chlorates, Chlorites, Peroxides, Azides	Lactic Acid				
Inorganic Corrosive Bases (0-4)	Dry and Dilute Organic Acids & Anhydrides				
(Dry Chemicals)	(0-1)				
Dry Hydroxides, Oxides, Silicates, Carbonates, Carbon	Citric Acid, Anhydrides, Peracids, etc.				
Inorganic #5 and #7 Toxins	Miscellaneous				
Arsenates, Cyanides, Sulfides, Selenides, Phosphides,	Household chemicals (vinegar, baking soda, vegetable oils),				
Carbides, Nitrides	Dyes, Stains, Agars, Sugars, Gels				
	Non-metal Corrosive Acid Storage Cabinet (I-9				
Corrosive Base Storage Cabinet (I-4 Liquids)	Liquids)				
>1.0 molar Ammonium Hydroxide, Sodium Hyroxide, Calcium Hydroxide (limewater), Potassium Hydroxide, Oxides, Silicates	Hydrochloric Acid, Sulfuric Acid, Hydrobromic Acid, Phosphoric Acid, Perchlorid Acid. Nitric acid separately stored to prevent contact. Limit Nitric Acid to a 5 year supply.				

Good cupboard labeling

Storage area 7 top shelf:

Inorganic 9

acids (weak and/or powdered) [see also area 1]

Inorganic 10

sulfur, arsenic phosphorus (and P pentoxide)

bottom shelf:

Inorganic 6

chlorates, perchlorates, chlorites perchloric acid, hypochlorites peroxides (except hydrogent are ?

Proper refrigerator signs

HOHAZARDS MAY BE CONTAINED IN THIS REFRIGERATOR

NO FOOD OR BEVERAGES OF ANY KIND ARE TO BE PLACED IN HERE

Inventory control

- Tracking inventory
- Assessing comparative hazards
- Selecting safer substitutes

Chemical Inventories Are Required

Who should do the inventory?

- Person knowledgeable about school chemicals
- Risk manager or science teacher
- Contractor
- Never a student

Preparing to do an inventory

- Have at least one assistant
- Don appropriate personal protective gear
- Have someone check on you periodically

Items to have nearby

- Spill supplies
- Fire extinguisher handy and operative
- Telephone, eyewash and shower

Helpful tools

- Parafilm
- Disposable gloves
- Paper
- Slide lock bags (lg.)
- Ban candidate list

Four step process

- Find the chemicals
- Track via an inventory list
- Decide what to keep
- Prep the rest to go

Three tips for easier inventorying

- Do it electronically
- Track as full containers
- Put empty bottles in the restock box

- If replaced, no change

How much to keep in stock?

5 year supply or smallest available size
Whichever is largest

Assess your actual rate of usage

No zip code? Purchased before 1965

Initial inventory = initial inspection

- Identify unsafe situations
- Take corrective steps
- Set up long-term systems

Protect yourself during the lab inspection

- Lab coat/long-sleeve shirt
- Goggles & glasses
- Closed-toed shoes
- Gloves
- Camera
- Partner
- Well rested senses

Start by evaluating the room

- Safety equipment functional?
- Ventilation in place?
- Odd or harsh odors?
- Itchy eyes?
- Do staff have concerns?

Labels

- Name matches MSDS
- Primary hazard

Hazardous waste disposal

What is waste?

- Don't want it
- Can't use it
- Unknown
- Orphaned
- Spilled

What's "hazardous" mean?

Defined by Federal and State Regulations

- Resource Conservation & Recover Act (CFR 40)
- Search "state name hazardous waste regulations"
- Characteristics
 - Hazardous qualities
- Designation
 - Listed chemicals or processes

What's not hazardous waste?

- Something someone else can use
- Something you can still use
- Empty container residues
 Empty container exemptions

For almost all chemical wastes

- Emptied using all normal means, and
- Contains less than 3% of container capacity

Basic regulatory requirements

- Know what it is
 - Can't dispose of unknowns
- Handle & store it safely
- Dispose or recycle it properly
- Document everything in writing

Non hazardous materials can go in dumpster or down the sewer drain

- Risk rating of All Grades in database
- Saves you lots of money

Some non-hazardous wastes

- Sugar
- Starch
- Carosafe[™]
- Water
- Vinegar
- Plaster of Paris
- Epsom salts
- pH paper

Hazardous chemicals must be disposed as hazardous waste

- Most schools are conditionally exempt small quantity generators
 - Under 220 pounds of hazardous waste per month
 - Under 2.2 pounds of P-Listed waste per month
- P-listed waste must be discarded products

 <u>www.safety.vanderbilt.edu/waste/p-listed-wastes.php</u>
- School chemicals list has common P-listed chemicals in schools <u>www.schoolchemlist.org</u>

Thinning the unnecessary

- Is it being used?
- Dispose of useless chemicals
- Remove ban candidates first

Set aside chemicals for later disposal Isolate them on existing shelves One sides goes, other stays

You can box your waste in advance Or wait and let the contractor do it

Then have them drum & remove them

Separate unlike wastes

Don't drive with chemicals in the cab Much better under a pickup canopy

If a waste is not generated, it...

- Won't need to be handled, recycled or disposed
- Won't impact human health or the environment
- Isn't regulated
- Can't come back to haunt you

If it's useful, it's not waste

Only true if you don't have to modify it first

Reduce the scale of experiments

Toothpick

24 Well Plate

Small scale chemistry is plastic-based

National Small-Scale Chemistry Center

The molecule is the medium and the message." Dr. Stephen Thompson

Hot Topics

Exciting New way to bring Small-Scale Chemistry even closer to the Point of Learning

The advent of the Tablet PC opens an exciting new world of possibilities for smallscale science experimentation. A new 20 minute video previews just a small sample of the benefits of conducting science experiments *directly on* the screen of a pen-based Tablet PC.

Watch Now (requires QuickTime)

What is Small Scale Chemistry? Why Small Scale Chemistry?

Benefits of Small Scale Chemistry

How to use Small Scale Chemistry

Small Scale Chemistry Equipment

Resources

— Publication Information

- Videos
- Video Order (Free)
- Feedback

- CHEMTREK Lab Manual

- Powerful Pictures

- Labtop

- Regional Centers
- Sample Experiments
- Join our E-Mail List

— Ask Dr. Stephen Thompson

 Frequently Asked Questions

- Resources

- Dr. Thompson's Blog

Reduce the concentration Less hazardous labs & safety videos

- 10 teacher and student labs provided
- Authored by high school science teacher
- This and others are on your flash drive

Safe Labs That Don't Pollute duced by the Local Hazardous Waste Management Program in King County, Washington

Small Scale Chemistry Exercise

Addressing Unsafe Situations Put Parafilm over glass stoppers

http://www.youtube.com/watch?v=X2mB-q2NQXY

Chemical fume hoods Don't block the flow One night limit on chemical storage Test fume hood flow rate with anemometer or velometer

Mark 100 fpm laminar flow sash height

Determining Whether to Pass a Hood

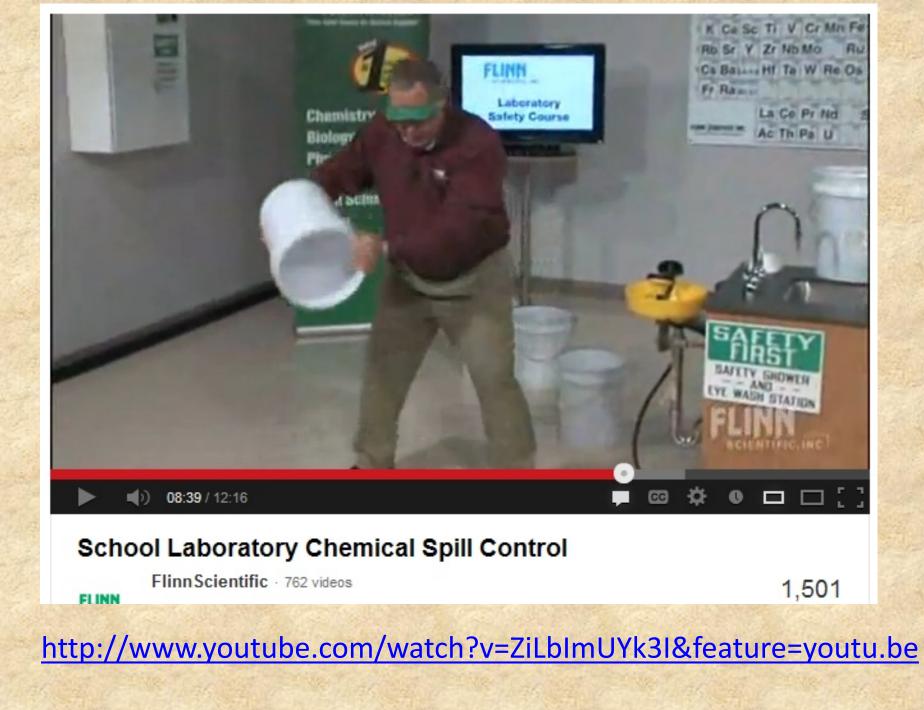
These conditions must all be met:

- Average face velocity with sash open 18 inches must be at least 100 fpm.
 Average face velocity with sash open six inches can't exceed 300 fpm.
- 3. Smoke can not come out of the hood when the sash height is at 18 inches.

Emergency gas shutoff

- Don't block
- Post sign prominently

Eye and skin flushing stations


- OSHA requires eye washes and safety showers where corrosive chemicals are used
- It doesn't specify performance standards
- ANSI standard Z358.1-1990 does
- Must be within 10 seconds of corrosives

Hands-free, tepid

Safety showers

- 20 gallons/minute for 15 minutes
- Access in 10 seconds
 - Eye wash
 - Test weekly
 - Showers
 - Test every six months
 - Consider a privacy curtain

Metal acid cabinets look nice \$1,300 worth of rust in 7 years

Should we care about spill lips?

- I think they're over-rated & rarely done right
- Cupboards with doors, windows & latches are better

Cap eaters

- Nitric acid
- Liquid hydroxides
- Compromised containers spill when tipped

A note on lodine

- Among most common "spilled" chemicals
- Crystal to fumes directly
- Fumes degrade cap
- Look for brown labels
- Store in a Ziploc bag

Minor Spills

- Can you answer YES to these 4 questions?
 - If so, it <u>may be</u> safe to clean up the spill
- Do you know what chemical was spilled?
- Do you know the hazards of the chemical?
- Do you have a chemical spill kit?
- Can you protect yourself from the hazards?

Creating an Integrated Safety Plan

The Laboratory Safety Standard


- Designate a chemical hygiene officer
- Write and implement an effective site-specific chemical hygiene plan
- Provide worker training and guidelines
- We'll revisit this later today in greater detail

Chemical hygiene plan components

- Safe work practices
- Methods to keep exposures below limits
- Training, medical consultation, hazard ID, respirator use and record keeping
- Task and chemical specific training

Administrative Controls

- Clean and organized work spaces
- Inventory control, less hazardous substitutes
- Safety equipment & supplies provided
- Safety training for staff
- Safe handling, disposal, decon procedures

Safety equipment & supplies

- Eye protection
- Hearing protection
- Skin protection
 - Clothing
 - Gloves
 - Shoes

I commonly use disposable nitrile gloves

Things to look for in glove charts

- Breakthrough time
- Permeation rate

Goggles or glasses? Hazardous liquids require goggles

NSTA guidelines for eye protection <u>www.nsta.org/portals/safety/eyeprotection.aspx</u>

NSTA Portals

Safety in the Science Classroom

Eye Protection for Your Laboratory

What is your obligation?

An important obligation of science teachers is to provide students with appropriate eye protection. All safety goggles and glasses must comply with ANSI Z 87.1 – 2003. Only safety goggles and/or glasses marked with "Z 87.1" should be purchased; the "Z 87.1" mark will appear on the frame or the lens. As a responsible teacher, you must select eyewear that provides you and your students with the most appropriate protection for the hazards of your science activities. Many states have specific eye protection laws. Regardless, teachers owe their students a duty of care. A teacher must reasonably address all foreseeable dangers inherent in any laboratory experiment or demonstration that will be performed in the science laboratory or classroom. A teacher must also instruct and ensure that students demonstrate the proper use of protective equipment.

Use plastic coated bottles

- Contains liquids
- Reduces fragility

Acid carriers are good safety tools

Move items via lab carts

Using the hygiene plan template

- The chemical hygiene plan on the flash drive is a template for you to adapt to your school
- Must be site-specific for chemicals of concern, layout, emergency contacts, responsibilities

Chemical exposures to address in plan

- Acids
- Formaldehyde
- Lead
- Hexavalent chromium
- Mercury
- Metal dusts & fumes
- Volatile solvents

Exercise: Inspecting a Science Stockroom

Overview of Environmental, Health & Safety Laws and Regulations

Material Safety

Getting Assistance

Department of Labor State of Vermont

Home Workers Businesses Info Center Forms & Publications Vermont.gov

You Are Here: Businesses > Workplace Safety > Project WorkSAFE

Businesses

Workplace Safety Wage & Hour- Fair Labor Practices Unemployment Tax & Benefit Information Workers' Compensation Workforce Training Programs Economic & Labor Market Information Training Seminars

New Businesses

Vermont JobLink

Find a job Post a resume
 Find an employee Post a job

Unemployment Insurance

Employer Applications

Claimant Applications

Grant Information

Grant Applications

Keene

WorkWISE

Formerly the NH Occupational Safety & Health Program, now a program of Keene State College and located in Manchester, WorkWISE NH provides free, on-site occupational safety and health consultation services to eligible employers. Although these services are primarily targeted to small businesses, the program welcomes the opportunity to assist employers of any size. Whether an employer has a question about the safe use of a specific piece of equipment or is looking to establish a workplace safety program, consultants are available to provide employers with such assistance.

To be eligible for the WorkWISE NH consultation service, businesses must:

- Be located in New Hampshire.
- Be privately owned.
- Have 250 or fewer employees at one site and fewer than 500 employees in total.

The annual Sharp Meeting took place September 12th at Centennial Hall in the Alumni Building at Keene State College. View news article.

RULES/REGULATORY

Federal

Federal regulations are administrative rules promulgated by federal agencies and are used to specify the implementation of a statute. Federal regulations have the full force and effect of law

- Recording and Reporting Occupational Injuries and Illness
- Safety and Health Regulations for Construction ¹
- Safety and Health Regulations for General Industry ¹³

Resources/Links

- New Hampshire Department of Labor Safety and Training
 - A CONTRACTOR OF A CONTRACTOR OF

Project WorkSAFE

Project WorkSAFE seeks to work with the employer to maintain safe working standards. Employers invite section staff to inspect their facilities, list a summary of hazards, and provide assistance in hazard correction. The employer avoids any citations or penalties, but is required to correct all hazards discovered during the inspection. These services are free and confidential.

Do you have a small business with a high rate of injuries?

Do you have trouble complying with OSHA regulations?

Lo you find it difficult to identify worksite hazards or interpret federal/state safety and health standards?

Do you want to change the way your employees think and act when it comes to health and safety on the job?

Are you concerned that your business cannot afford a professional health and safety consultant?

WE CAN HELP!

If you are a small Vermont business, there are FREE and confidential services available to you -- anything from a phone consult to a full health and safety evaluation at your worksite. Just call the Department of Labor.

We give FREE, NO-PENALTY consultations.

At your request, we will go with you on a tour of your facility, point out problem areas, and help you identify solutions. Our services include safety audits, program development and evaluation, chemical exposure assessments, and noise monitoring.

You can protect your employees.

Learning more about workplace hazards and how to prevent them can help you protect your workers from injury and illness. It may